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Abstract 

This article applies finite mixture distributions to the estimation of cost functions for 
financial firms through time. The mixture approach allows the estimation of multiple 
technologies when firms' technology choices are unobservable. Technology switching 
('diffusion') and underlying technical change are simultaneously evaluated. An application 
to large samples of U.S. banks for the years 1982-1986 illustrates the approach. Results 
suggest banks switch to lower cost production technologies when unburdened by strict 
branching regulations. © 1997 Elsevier Science B.V. 
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1. Introduct ion 

As primary determinants of  human welfare, technological diffusion and techni- 
cal change have long been a focus of  economic research. This article proposes and 
illustrates a new empirical method for examining these fundamental processes. 
Our approach applies finite mixture distributions to the estimation of  cost func- 
tions in a time series of  cross-sections setting. Mixture procedures allow for the 
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simultaneous estimation of multiple technologies of production when the re- 
searcher is unable to directly identify which firms use which technologies. The 
mixture approach gives cost function representations of these underlying technolo- 
gies, and estimates the proportions of firms using one or another technology 
through time. Both the existence of multiple technologies and the presence of 
non-neutral change in the technologies can be statistically tested. Because mixture 
estimation facilitates cost comparisons between technologies, the extent to which 
firms' technological choices are consistent with cost advantages is directly mea- 
surable. Thus the mixture approach allows one to examine the competitive process 
at work within an industry. 

The conceptual framework for mixture analysis is straightforward. Consider an 
industry composed of many firms observed at different times. Production is 
characterized by multiple technologies in simultaneous use. Although individual 
firms' technological choices are not directly observed, such choices may signifi- 
cantly affect observed costs. Through time firms are able to switch between 
technologies, and may do so in response to cost advantages. Further, technical 
progress can occur which affects all technologies in various nonidentical ways. 
Both switching between technologies ('diffusion') and changes in the underlying 
technologies themselves ('technical progress') can be empirically evaluated by 
mixture analysis. 

The mixture approach offers a strong reconciliation between the widely used 
'diffusion' and 'cost function' methods of analyzing technical progress. Diffusion 
studies typically analyze the adoption rates of observable, capital-embodied prod- 
uct or process innovations. Evidence from diffusion studies suggests that firms 
usually will not share a common production technology. In a summary of such 
work Reinganum (1989) notes, " . . .  an important empirical observation is that 
adoption is typically delayed and that firms do not adopt an innovation simultane- 
ously". ~ Yet this heterogeneity in production technologies is inconsistent with the 
cost function approach to evaluating technical progress because firms with differ- 
ent technologies do not share a common cost function. The addition of time 
variables to the cost regression relationship will not eliminate this specification 
error. Mixture analysis reconciles the 'diffusion' and 'cost function' conceptualiza- 
tions by allowing scope for both. 

We apply our approach by estimating two-component mixtures of translog cost 
functions for two large samples of U.S. banks for the years 1982-1986. Cost 
function specifications allow for non-neutral technical change in the underlying 
production processes. Interest focuses on analyzing technology switching by firms, 
estimation and description of the underlying technologies, and evaluation of the 
extent to which the technology switching is consistent with production cost 
differentials. Statistical tests for the presence of a mixture are executed using both 

1 Reinganum, 1989, p. 383; see also Romeo (1975) and Spence (1984). 
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the Wolfe (1971) modified chi square procedure and bootstrap evaluation of 
Wolfe's statistic. 

Our analysis establishes several conclusions. First, the Wolfe test and bootstrap 
evidence strongly support the presence of a mixture in the data, establishing the 
simultaneous existence of multiple technologies among sample banks. Second, 
statistically significant technology switching among banks has occurred over the 
sample period. Further, this technology switching is consistent with fairly large 
cost savings between technologies. For banks operating in states without branching 
restrictions, the proportion of firms selecting the low cost technology increased 
from about 54% in 1982 to over 68% in 1986. For restrictive branching 'unit 
state' banks, diffusion of the low cost process was less pervasive, rising from 50% 
usage in 1982 to 58% in 1986. Additionally, significant non-neutral technical 
change occurred in the underlying cost functions, although the nature of these 
changes varied widely. These results are broadly consistent with firm adjustments 
to heightened competition, and additionally suggest that restrictive regulation may 
constrain the ability of firms to adopt new, cost-saving technology. 

The article is divided into five sections. Section 2 reviews the literature on 
diffusion and mixture modelling. Section 3 presents the econometric model and 
data, while Section 4 presents results, hypothesis tests, and discussion. A conclu- 
sion completes the paper. 

2. Literature and background 

Mixture estimation of time dependent cost functions combines ideas from 
diffusion studies, cost analysis, and mixture modelling. Because all three litera- 
tures are relevant, we discuss each in turn. 

Diffusion studies arose from the pioneering work of Griliches (1957), Carter 
and Williams (1957), Mansfield (1968a,b), David (1969), and others. Numerous 
such studies have been undertaken, and many are summarized by Reinganum 
(1989). Interest has focused on identifying economic and managerial factors 
relevant to a firm's decision to adopt new technology. While such studies are 
useful, all require that the adoption decision be directly observable. As a conse- 
quence, analysis has typically been limited to manufacturing or agricultural sectors 
and capital-embodied innovations. Many diffusion studies find that innovations are 
adopted slowly even when they significantly lower costs. 2 

Cost function estimation has been applied to the analysis of technical change in 
several formats. The inclusion of time variables in cost regressions has a long 
history. 3 Alternatively, separate cost functions can be estimated for each time 

2 Mansfield (1968a) notes that, "... the diffusion of a new technique is generally a rather slow 
process". (p. 136) 

An excellent introduction is offered by Berndt (1991). 
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period and compared (Gropper, 1991). Apparent changes in cost parameters are 
then attributed to underlying technical developments. The effects of time can be 
characterized as input saving or using, neutral or non-neutral, etc. All such 
procedures rely on the assumption that some specified cost relationship applies to 
all firms. This requirement, however, is contradicted by the findings of most 
diffusion studies. 

Mixture models are frequently used in the life sciences, but have had only 
limited applications in economic research. Mixtures arise whenever sampling takes 
place from a population composed of two or more subpopulations which cannot be 
directly distinguished. One goal of the analysis is to estimate the relative frequen- 
cies of the subpopulations and their distributions. The best known economic 
application of mixtures is in the generalization of switching regressions proposed 
by Quandt (1972) and Quandt and Ramsey (1978). Applications to market 
disequilibrium models are offered by Quandt (1988). More recently, Beard et al. 
(1991) applied mixture models to cost estimation in a cross-sectional application 
in an effort to accommodate multiple production technologies. 

Mixture analysis involves several interesting problems for hypothesis testing 
and estimation. Singularities in the likelihood surface defeat many algorithms, 
although Hartley (1978) and Beard et al. (1991) successfully propose an EM 
procedure. For hypothesis evaluation, the natural test for the presence of a mixture 
involves assigning zero frequency to one or another subpopulation. This restriction 
violates regularity conditions and produces nuisance parameters that arise only 
under the alternative hypothesis. Testing in such nonstandard cases is an active 
area of research. 4 No totally satisfactory solution is available, although an 
approximate test by Wolfe (1971) is usable, as are bootstrap procedures (McLach- 
lan, 1987). 

A substantial amount of research has been conducted on cost structure and cost 
efficiency in the financial services industry. Much of the more recent literature 
was reviewed in an excellent article by Berger et al. (1993b), while Benston 
(1994) puts the cost literature in the broader context of a variety of changes in the 
banking industry. Frontier cost and production functions of the linear program- 
ming or stochastic variety have been widely utilized (see Bauer et al., 1993 and 
other papers in that volume), and the 'profit frontier' methodology of Berger et al. 
(1993a) has provided insights into both the industry and the estimation techniques 
used to study it. Recently, the classic article on bank cost frontier estimation by 
Ferrier and Lovell (1990) was extended by Caudill et al. (1995), while additional 
insights about the effects of incorporating previously excluded services on esti- 
mated bank efficiency were provided by DeYoung (1994). A broad review of 

See Davies (1987), Andrews (1993), and Andrews and Ploberger (1993) for some of the issues 
involved. 
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moral hazard and agency problems has been provided by Barth and Brumbaugh 
(1994). The cost effects of moral hazard, managerial competence, and simple 'bad 
luck' were examined by Berger and DeYoung (1996), while the cost consequences 
of moral hazard and insolvency were studied by Gropper and Beard (1995). The 
effects of organizational form on costs were the subject of investigations by 
Cebenoyan et al. (1993), Grabowski et al. (1993), and Mester (1993, 1995), while 
the effects of deregulation were analyzed by LeCompte and Smith (1990), 
Humphrey (1993), Gropper (1991, 1995) and Gropper and Oswald (1996). Recent 
work by Mahajan et al. (1996) provided a comparison of cost structures for 
domestic and multinational banks, indicating potential cost advantages for the 
largest multinational banks, while Miller and Noulas (1996) found that the largest 
U.S. banks appeared to be more efficient than smaller banks. Finally, DeYoung 
and Nolle (1996), using a risk-adjusted profit efficiency model, found that 
foreign-owned banks were significantly less efficient than U.S.-owned banks, 

Whether estimating 'average practice' cost functions or frontiers of whatever 
variety, there is a common thread to the bank cost and efficiency literature 
summarized above, Conventional average practice or frontier estimations rely on 
the hypothesis of a single technology which all firms use, whether efficient or not. 
Mixture models provide a general alternative to the conventional average practice 
or frontier models; if the existence of a mixture is (statistically) rejected, then the 
alternative is the conventional model. Failure to reject the presence of a mixture 
would indicate the presence of multiple technologies, and provide a parametric 
representation of the cost functions corresponding to those technologies. In the 
presence of multiple technologies, inferences about technical change based on 
traditional models may confound the logically separate effects of firm technology 
switching and underlying change in the technologies themselves. Failure to 
account for this distinction may lead to erroneous conclusions on the effects of 
regulatory initiatives in this industry, 

Thus mixture estimation may be well suited to the study of banking and 
financial sectors experiencing both deregulation and rapid technological change. It 
is critically important, from a policy perspective, to separate these two influences 
on market structure. While both increased efficiency (arising from firm switching 
from higher to lower cost technology) and technical progress can improve welfare, 
the policies that can be expected to promote or undermine these processes are 
probably quite different. For example, competition, the goal of deregulation, may 
be more effective in facilitating firm movements to lower cost, extant technologies 
than in fostering technological innovations. 

We note also that a mixture model offers an explanation for apparent firm 
inefficiency of quite a different character than that provided by frontier cost 
models. In most frontier models, firms off the minimum cost boundary are 
regarded as inefficient. The mixture approach, however, allows such firms to be 
'efficient' in the sense that they efficiently use an inefficient (i.e., higher cost) 
technology. Yet the mixture approach does not impose any ex ante restrictions on 
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how the component cost functions are related. Thus the results of mixture analysis 
can offer an explanation for ' inefficiency'  not available within other approaches. 

3. Model specification and data 

A random variable e on the real line R has a K-component finite mixture 
distribution if e has marginal density g(e)  given by 

K 

g ( e )  = ~ A i f / ( e  ) ,  (1) 
i = l  

where 

Ai> O, Vi,  

K 

E A i  = 1, 
i = 1  

L ~ f / (  E)de  = 1, Vi,  

and 

f, .(E) > O ,  Ve inR.  

The densities fi are called component densities and the A i are called mixing 
weights. The A i are usually interpreted as sampling probabilities for the underly- 
ing K subpopulations. Identification conditions for mixtures are given by Teicher 
(1963), Yakowitz and Spragins (1969) and Chandra (1977). Extended discussions 
of estimation and hypothesis testing are offered by Everitt and Hand (1981) and 
Titterington et al. (1985). 

Application of the mixture model to cost estimation is straightforward. Assume 
there are T periods over which firm level observations on costs c, outputs q, and 
input prices w are available. There are n t, t = 1,2 . . . . .  T, observations each period. 
Let i index observations and t time, so that {Q,, q~t, wi,} is a typical observation. 
Let C(q, w; O, t) be a cost function with unknown parameters 0 at time t. Then 
the probability that a randomly selected observation on costs c ,  was generated by 
the process ci, = C(qit, wit; 01, t )+  eilt is denoted A t, where eilt is a normally 
distributed, zero-mean random variable with variance cr~ 2. The probability that ci, 

2 is was generated by the alternative process cit = C(q , ,  wit; 02, t) + E 2, where Eit 
normal, with zero mean, and has variance o -2, is then just 1 - A t. The distur- 

2 bances e]t and e~t are assumed stochastically independent and serially uncorre- 
lated. Presumably 0 1 ~  02, leading to quantitative and qualitative differences 
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between technologies. The inclusion of time t in the cost functions allows for 
technical change. 

The likelihood function L for this mixture model is given as 

T nt 

L =  I - I I - I [  h t95 i (c i , -  C( qi,,wi,; O ' , , ) )  
t = l i = l  

+ ( 1 -  I \ t )952(ci t -  C( qit, wit ; 02,'))], (2) 

where 95~ and 952 are normal marginal densities with zero means and variances 
o y  and o-2-, respectively. 

The likelihood given in Eq. (2) is maximized utilizing the EM algorithm as 
adapted to mixture problems by Hartley (1978); details are provided in Appendix 
A. As a byproduct of  this estimation, one obtains observational 'weights '  which 
assign a probability Wit, 0 < ~ t  < 1, that a particular observation corresponds to 
technology 1 or technology 2. These weights, combined with the sample mixing 
probabilities h t, provide evidence on technology switching by firms through time, 
allowing us to determine whether, and to what extent, sample banks have moved 
to lower cost processes. 

Specification of the cost functional form C(q, w; O, t) reflects the requirements 
of linearity, flexibility, theoretical consistency, and simple incorporation of techni- 
cal change. We utilize the transcendental logarithmic (translog) form. Technical 
change is incorporated parametrically using a suggestion of Berndt (1991): 

In c = a o + E a  r In q i + y~ [3~ In w k + ( 1 /2)S ,  Za i j  In qi In qj 

+ ( 1 /2 )EE/3 ,~  In w, In w, k + EE6 j ,  In qj In w k + ~9, In t + ~bz(ln t) 2 

+ Y~ ~0tk In t In w k. + ~ qJtj In t In qj. (3) 

The a ' s ,  /3's, 6 ' s  and O 's  are parameters to estimate and ' ln '  denotes the 
natural logarithm. The time variable ' t '  measures years plus 1 since 1982. Input 
price homogeneity requires ~ /3  k = 1, ~/31k = ~/3kt = 0 over L and K, ~6jk- = 0 
for any output qj, and Y~6tk = 0. These restrictions are imposed in all estimations. 

Several tests of  the cost form in Eq. (3) applied to the mixture specification in 
Eq. (2) are of  interest. Tests fbr the presence of a mixture use the restriction 
A, = 0, Vt. The test for significant technology switching involves the restrictions 
h~ = A 2 = . . .  = h T. This test can be conducted by conventional means. Finally, 
the parameter restrictions ~0tk = 0 for each K provide a test for Hicks-neutral 
technical change in the component technologies. 

The mixture approach is applied to two large samples of  solvent U.S. banks 
operating between 1982 and 1986. Data for all estimations come from the 
Functional Cost Analysis (FCA) program of the U.S. Federal Reserve System. The 
FCA program is administered to participating institutions on a voluntary basis by 
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the regional Federal Reserve banks, and is coordinated nationally by the Federal 
Reserve Bank of New York. The FCA data have been widely used in cost function 
analysis of U.S. banks. The advantages of using FCA data are that detailed 
information on both inputs and outputs is provided in a standardized format and 
their use enables comparison with previously published research; disadvantages 
include nonrandom sampling of the nation's financial institutions and the omission 
of the largest institutions. Another drawback is that the data made available to the 
public has some information masked to protect the confidentiality of the participat- 
ing institutions. However, detailed information on the various inputs used and the 
size and number of deposit, loan, and trust accounts is not available from other 
sources, such as Call Report data. 

The vast majority of the roughly fourteen thousand commercial banks in the 
United States over the time period of this study had total assets comparable in size 
to the banks in the FCA program. Although the very largest banks are not 
represented, banks from less than $10 million in total assets to over $2 billion are 
in the FCA data set. While the FCA data should not be used to draw conclusions 
about the nation's largest banks, patterns found in the FCA data may provide 
insights about trends affecting the smaller and medium-sized banks which make 
up over 90 percent of the finns in the U.S. banking industry. 

The years 1982-1986 were selected for study due to the important changes in 
regulations and technologies prior to and during this time. The disintermediation 
period of the 1970s was a particularly turbulent era for the U.S. banking industry. 
High and rising interest rates led depositors to pull funds from banks and reinvest 
them in money market mutual funds, increasing the growth of banks' competitors 
and fostering rising market pressures. The Depository Institutions Deregulation 
and Monetary Control Act of 1980 (DIDMCA) phased out by 1986 the interest 
rate restrictions which had limited bank responses to competitive pressure, and 
gave the Federal Reserve greater control over the banking system. While the 
DIDMCA is viewed as the most important bank regulatory act since the 1930s, the 
Depository Institutions Act of 1982 also had a significant impact on commercial 
banks. Technical developments in the 1970s and 1980s included computer and 
telecommunications advances, and the widespread development and use of ATM 
technology (Hannan and McDowell, 1984). These ongoing technical advances 
combined with earlier regulatory shocks make the 1982-1986 sample period 
fertile ground for analysis. 

Given this institutional background, we expect that technical change in the U.S. 
banking sector will manifest itself in the following form. First, it seems unlikely 
that the cost minimizing operational structure for banks is the same in both the 
regulated and (somewhat) deregulated environments. Hence, the important legal 
changes represented by the DIDMCA and the DIA presumably triggered changes 
towards more competitively viable bank structures. Yet the literature on diffusion 
suggests (strongly) that such changes will not occur overnight, and the speed of 
the adjustments is an empirical question. Second, the widespread integration of 
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ATM and information systems technologies into bank operations presumably 
affect bank costs regardless of the particular operational mode the bank has 
adopted: both banks that have, and have not, altered their managerial practices can 
use and, perhaps, benefit from capital-embodied innovations such as ATMs. 
Hence, we expect to see both (i) bank conversions to a lower cost production 
technology more consistent with a highly competitive environment, and (ii) 
secular, innovations-driven changes in the underlying production processes repre- 
sented by shifts through time in underlying cost functions. 

Our bank production representations are selected with previous research on 
bank costs in mind. Specifically, we adopt the 'intermediation' model in which 
banks combine capital, labor, and funds to produce loans and other outputs. Clark 
(1988) provides a useful overview of the history and consequences of this 
paradigm. We exploit production-cost duality by representing the relevant bank 
production processes by translog cost functions as specified in Eq. (3). Total costs 
are taken as the sum of labor, capital (both physical and financial), interest costs. 
Outputs selected for analysis are the dollar volumes of loans, investments, and 
trust accounts. 

Input prices are calculated from the FCA data. The sums of wages, salaries, and 
benefits divided by the numbers of bank employees provide measures of firm 
labor costs. 5 Total interest paid on borrowed money divided by the quantities of 
borrowed funds produce average prices for funds. Capital prices are a weighted 
composite of the costs of physical and financial capital, calculated by the 
procedure proposed by Hancock (1985) and utilized by Gropper (1991). Nominal 
magnitudes are converted to 1982 dollars. 

Significant differences in U.S. state branching regulations necessitate a division 
of the sample into two parts. The FCA data include an indicator variable 
identifying whether the bank is located in a unit or branch banking state. We used 
this indicator, which was determined by the Federal Reserve, to separate the data. 
Observations on banks operating in states with severe branching restrictions (at 
most one branch in addition to the main office) constitute the unit states sample. 
Data on banks in states with few or no branching restrictions form the branch 
states sample. This division is made because branching restrictions are a severe 
constraint on physical capital input usage. Banks in liberal branching jurisdictions 
had an average of ten branches during the sample period, suggesting that branch- 
ing restrictions are binding constraints that will affect cost minimizing input usage. 
Further, the division of the sample in this way guarantees that any finding of 
multiple technologies will not merely reflect differences in branching regulations. 
Finally, separate estimations will allow us to evaluate the effects of regulatory 
restrictions on costs and technological diffusion. 

5 We conducted additional estimations, not reported here, incorporating two kinds of labor inputs, 
managerial and staff. Similar results are obtained in that case. 
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4. Estimation and results 

Summary statistics for the unit and branch states samples appear in Table 1. 
Branch state banks had larger total costs and output levels throughout the sample 
period, and enjoyed lower average interest costs, possibly as result of  their more 
geographically dispersed operations. While  branch state banks experienced higher 
average capital costs, their lower officer-to-employee ratios reduced their average 
labor costs about 10%. 

Parameter estimates for all models appear in Table 2. Conventional OLS results 
are presented for comparison purposes. Prior to analyzing Table 2, we first test for 
the presence of mixtures in our samples. 

Wolfe  (1971) used evidence from simulations to propose an approximate 
l ikelihood ratio test based on a modified chi square distribution. Wol fe ' s  test 
statistic is 

S = ( 2 / n ) ( n  - 1 - d - ( C 1 / 2 ) ) l o g  L, (4)  

where L is the l ikelihood ratio under the null hypothesis of  no mixture, n is the 
sample size, C 1 is the number of  components in the mixture, and d is the 
dimension of the underlying normal distributions. In the absence of  a mixture, S 
has approximately a chi square distribution with 2 d ( C  I - 1) degrees of  freedom. 
Everitt and Hand (1981) conducted simulation analyses of S and concluded the 
test had low power but was reasonable if  n > 10d. Our sample sizes greatly 
exceed these limits. Performing the test we obtain values of  S = 390.76 for the 
branch sample and S = 256.56 for the unit sample. Both these results far exceed 
the critical level of 13.815 for an a = 0.001 Type I error. This is strong evidence 
for the presence of a mixture. 

Because of  the approximate nature of  Wol fe ' s  test, a Monte Carlo technique is 
used to bootstrap the distribution of  S for both samples. This procedure, analyzed 
by McLachlan (1987), is equivalent to bootstrapping the l ikelihood ratio statistic 
under the null hypothesis of  no mixture in the data. The l ikelihood surface for the 

Table 1 
Descriptive statistics for unit and branch data sets a 

Variable 

Unit States sample Branch States sample 

Mean Standard deviation Mean Standard deviation 

Total costs ($) 9,513,679 10,452,189 20,340,839 28,833,590 
Investments ($) 28,990,066 31,146,324 60,484,969 75,320,257 
Loans ($) 52,247,396 67,864,599 111,999,415 162,144,034 
Trust accounts ($) 1,212,509 3,519,930 2,684,051 6,647,691 
Wage (S/employee year) 19,995 3,124 18,051 2,685 
Price of capital (%) 15.89 5.63 16.40 3.70 
Interest rate (%) 7.17 1.16 6.90 1.10 

All financial magnitudes in real 1982 dollars, except Price of capital and Interest rate in %. Unit 
States sample size is 967. Branch states sample size is 1,581. Data are for the years 1982-1986, 
inclusive. Wage calculations include employee benefits and health insurance costs. 
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mixture of normals is well known to contain singularities at which points the 
variance of one component density goes to zero and the likelihood becomes 
unbounded. 6 We eliminate these degenerate points from our bootstrap replications 
by discarding trials producing values of A, 1 - A ,  o-j or 0- 2 that are less than 
0.01. About 10% of all replications produce such degeneracies. We limit our 
analysis to 100 valid trials per sample due to the need for 200 iterations of the EM 
algorithm per bootstrap trial. 

The bootstrap results provide support for the presence of a mixture. The 100 
bootstrap trials for the branch states sample produce a mean S of 220.42 with 
standard deviation 86.79. Only four trials produced S values exceeding our Wolfe 
statistic of 390.76. For the unit state sample a mean S of 134.65 with standard 
deviation 40.47 was obtained, and only three of 100 trials produced S statistics in 
excess of our calculated value S = 256.56. We conclude that both samples are 
characterized by multiple technologies of production. 

We turn next to an analysis of diffusion. A likelihood ratio test for the presence 
of significant technology switching over time (utilizing the restrictions A l = a 2 = 
. . . =  A r)  was conducted on both samples. We obtained likelihood ratio test 
statistic values of 8.45 for the unit state banks and 13.12 for the branch banks. The 
unit state result is significant at the 10% level, while the branch result is 
significant against a Type I error of 1%. It appears that both samples exhibit 
significant technology switching (diffusion). 

An examination of Table 2 suggests that the technologies arbitrarily denoted 
MIXUI and MIXB1 have experienced generally increasing usage rates over the 
sample period. For the unit sample, MIXU1 increased in popularity from about 
50% usage in 1982 to 58% usage in 1986. Results for the technology MIXB1 in 
the branch sample are similar, rising from 54% to 75% usage in 1985 before 
retreating in the final year. 

The role of technical change in the underlying technologies can be examined by 
testing the restrictions ~0,k = 0 for all K. Inability to reject these restrictions 
suggests the presence of Hicks neutrality, and such a result would indicate an 
absence of significant input bias in the technical change. Performing the required 
calculations yields likelihood ratio statistics of 34.09 for unit banks and 63.26 for 
the branch sample. Both results are significant at the 1% level, implying non-neu- 
tral technical change has occurred in both environments. Thus technical change 
among banks will be associated with significant alteration in input mixes, the 
nature of which is examined below. It is important to note, however, that the 
technological evolution of U.S. banks in the 1980s was characterized by two 
distinct and significant effects: firms switched between technologies while, simul- 
taneously, the nature of each of those technologies was changing. 

6 Hansen (1992) and Titterington et al. (1985) offer an extended discussion of the pathologies of 
mixture models. 
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Table 2 
Estimation results for unit and branch state bank mixtures and OLS a 

Unit State sample Branch state sample 

Variable MIXU1 MIXU2 UOLS MIXB1 MIXB2 BOLS 

Intercept -0 .036  0.065 -0 .013 -0 .046  -0 .019  -0 .0045 
(0.008) (0.023) (0.008) (0.006) (0.018) (0.005) 

INVEST 0.326 0.314 0.318 0.341 0.363 0.353 
(0.012) (0.027) (0.012) (0.008) (0.018) (0.008) 

LOAN 0.655 0.583 0.620 0.670 0.621 0.654 
(0.010) (0.030) (0.010) (0.008) (0.020) (0.007) 

TRUST 0.002 0.017 0.007 -0 .007 0.0001 -0 .005 
(0.003) (O.OlO) (0.004) (0.003) (0.007) (0.003) 

WAGE 0.235 0.377 0.261 0.249 0.175 0.253 
(0.038) (0.084) (0.038) (0.024) (0.075) (0.024) 

TIME -0 .058  -0 .009  -0.041 -0 .085  -0 .068  -0 .084  
(0.014) (0.033) (0.015) (0.010) (0.031) (0.010) 

INTRATE 0.502 0.481 0.512 0.504 0.642 0.553 
(0.038) (0.079) (0.038) (0.023) (0.068) (0.022) 

(INVEST) z 0.248 0.102 0.175 0.173 0.196 0.181 
(0.015) (0.026) (0.015) (0.010) (0.027) (0.011) 

(LOAN) z 0.130 0.146 0.164 0.213 0.223 0.199 
(0.017) (0.030) (0.015) (0.013) (0.035) (0.014) 

(TRUST) 2 0.0003 0.001 0.0006 - 0.0008 0.0005 - 0.0005 
(0.0004) (0.001) (0.0004) (0.0003) (0.0007) (0.0002) 

(LOAN)(1NVEST) -0 .173 -0 .099  -0 .142  -0 .187  -0 .174  -0 .168 
(0.014) (0.024) (0.014) (0.010) (0.028) (0.012) 

(LOANXTRUST) 0.0008 -0 .003 - 0.002 0.0004 --0.005 -0.001 
(0.0009) (0.002) (0.0009) (0.0006) (0.002) (0.0001) 

(INVESTXTRUST) - 0.003 0.003 - 0.0005 0.001 0.002 0.009 
(0.001) (0.001) (0.0010) (0.001) (0.002) (0.0006) 

(WAGE) 2 -0 .160  0.148 0.247 0.079 0.767 0.342 
(0.181) (0.291) (0.129) (0.112) (0.296) (0.105) 

(TIME) 2 -0 .0002 0.078 0.075 -0 .015 -0 .082  -0 .034  
(0.033) (0.073) (0.035) (0.025) (0.067) (0.024) 

(1NTRATE) 2 0.176 0.635 0.783 0.588 0.228 0.545 
(0.177) (0.231) (0.121) (0.092) (0.236) (0.082) 

(WAGE)(TIME) 0.091 -0.081 -0 .080  -0 .033 -0 .115 -0 .056  
(0.052) (0.091) (0.043) (0.036) (0.081) (0.033) 

(WAGE)(INTRATE) -0 .009  -0 .292  -0 .444  -0 .319  -0 .072  -0 .232  
(0.166) (0.221) (0.105) (0.085) (0.238) (0.076) 

(TIME)(INTRATE) 0.003 0.128 0.166 0.124 0.0007 0.079 
(0.053) (0.080) (0.042) (0.030) (0.074) (0.026) 

(WAGEXINVEST) -0 .168  0.026 -0 .016  -0 .006  0.114 0.030 
(0.039) (0.068) (0.035) (0.027) (0.086) (0.029) 

(WAGE)(LOAN) 0.075 -0 .057 -0 .052  -0 .006  -0 .112  -0 .058  
(0.040) (0.076) (0.035) (0.028) (0.082) (0.028) 

(WAGEXTRUST) 0.008 0.010 0.007 0.006 -0 .008  0~004 
(0.003) (0.007) (0.003) (0.002) (0.006) (0.002) 
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Table 2 (continued) 
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(TIME)(INVEST) 0.021 -0.041 -0.025 - 0.001 -0.015 -0.012 
(0.016) (0.023) (0.014) (0.012) (0.027) (0.011) 

(TIME)(LOAN) -0.006 0.024 0.030 -0.012 0.027 0.014 
(0.015) (0.023) (0.013) (0.012) (0.026) (0.010) 

(TIME)(TRUST) -0.003 0.001 -0.001 -0.003 -0.002 -0.002 
(0.001) (0.002) (0.001) (0.001) (0.002) (0.001) 

(INTRATE)(1NVEST) 0.108 0.015 -0.034 0.013 -0.035 0.018 
(0.041 ) (0.073) (0.034) (0.028) (0.071 ) (0.025) 

(INTRATE)(LOAN) -0.032 0.128 0.096 0.057 0.176 0.088 
(0.041) (0.069) (0.034) (0.028) (0.073) (0.027) 

(INTRATE)(TRUST) -0.006 -0.013 -0.009 -0.007 -0.004 -0.009 
(0.003) (0.006) (0.003) (0.002) (0.005) (0.001) 

PCAP 0.262 0.140 0.226 0.246 0.183 0.193 
(0.062) (0 .1481  (0.148) (0.062) (0.158) (0.158) 

(PCAP) 2 - 0.002 0.197 0.142 0.029 0.851 0.423 
(0.043) (0.070) (0.070) (0.047) (0.112) (0.112) 

(PCAP)(WAGE) 0.169 0.144 0.197 0.239 -0.695 -0.110 
(0.075) (0.142) (0 .1421 (0.062) (0.126) (0.126) 

(PCAP)(INTRATE) -0.167 -0.342 -0.339 -0.268 -0.156 -0.312 
(0.062) (0.142) (0.148) (0.061 ) (0. 158) (0.158) 

(PCAP)(INVEST) 0.060 -0.042 0.002 0.040 -0.079 -0.048 
(0.018) (0.044) (0.044) (0.016) (0.053) (0.053) 

(PCAP)(LOAN) -0.042 -0.071 -0.043 -0.051 -0.063 -0.029 
(0.019) (0.049) (0.049) (0.018) (0.059) (0.059) 

(PCAP)(TRUST) -0.003 0.002 0.001 0.001 0.013 0.004 
(0.002) (0.004) (0.004) (0.001) (0.003) (0.004) 

(TIMEXPCAP) -0.094 -0.047 -0.086 -0.091 (0.114) -0.022 
(0.025) (0.044) (0.044) (0.024) (0.055) (0.055) 

~t1982 0.501 - 0.539 - - 
AI983 0.497 - - 0.617 - - 
AI984 0.577 - - 0.713 - - 
/~1985 0.557 - - 0.752 - - 
'~1986 (I.582 -- -- 0.682 -- -- 
O" 0.056 0.121 0.120 0.065 0.115 0.107 

~' Asymptotic standard errors in parentheses. 

An  examinat ion  o f  the coeff ic ient  results in Table  2 sheds l ight on some of  the 

qual i ta t ive differences be tween  the componen t  technologies  for both samples.  

A m o n g  unit state banks, technology M I X U 1 ,  which  en joyed  modes t ly  rising usage 

during the sample  period, exhibits  s ignif icantly greater  t echnologica l ly-dr iven  cost 

reduct ions than does M I X U 2 .  Further  and, perhaps,  more  significantly,  M I X U 1  

exhibits  biased (non-neutral)  technical  change which is capital saving, an effect  

whol ly  absent  f rom M I X U 2 .  Hence,  the technology to which unit state banks were  

conver t ing  during this per iod en joyed  rapid technical  progress  and capi ta l -saving 

technical  change.  This suggests  strongly that the role o f  physical  and f inancial  

capital in bank product ion was, in fact, d iminishing during this period. Since 
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Table 3 
Expected costs and scale returns for mixture and OLS technologies a 

Output scaling Unit States Branch states 

(% of sample M1XU1 MIXU2 UOLS MIXB1 MIXB2 BOLS 
means) 

Expected costs 
50% 3,615 4,851 4,052 7,180 8,441 7,322 
100% 9,161 10,141 9,390 19,405 19,934 19,425 
150% 13,281 13,899 13,338 28,334 28,883 28,395 
200% 16,582 16,839 16,515 35,494 36,227 35,637 

Scale returns (OSE) 
50% 0.965 * 0.881 * 0.909 * 0.996 0.940 * 0.973 * 

(0.011) (0.016) (0.010) (0.005) (0.013) (0.005) 
100% 0.984 * 0.915 * 0.945 * 1.004 0.986 1.003 

(0.008) (0.017) (0.008) (0.004) (0.010) (0.004) 
150% 0.994 0.935 * 0.966 * 1.009 1.012 1.020 * 

(0.009) (0.021) (0.009) (0.005) (0.012) (0.005) 
200% 1.002 0.949 * 0.981 * 1.013 * 1.031 * 1.032 * 

(0.010) (0.024) (0.010) (0.006) (0.013) (0.006) 

a Expected costs in 1000's of 1982 dollars. Scale returns OSE measures have asymptotic standard 
deviations in parentheses. 
* Significant at the 5% level. 

physical  capital, for example,  is typically associated with fixed costs, technologies 

which reduce dependence  on this input  may be part icularly attractive in a more 
volatile, competi t ive envi ronment .  

Remarkably  similar  effects emerge for branch state banks.  The ' r i s ing '  technol- 

ogy MIXB1,  like MIXU1,  exhibits strong capital-saving technical  change com- 
b ined with highly signif icant  technical progress. These effects are weaker  or 

wholly absent  in the decl ining technology MIXB2.  Thus we conclude that 
important  quali tat ive differences be tween  technologies emerge for both samples. 

F i rm technology switching presumably  arises f rom a desire to exploit  favorable 

differences be tween technologies.  Product ion costs and returns to scale are two 
important  ways in which technologies might  differ. These performance d imens ions  

are examined  in Table  3. We  calculate expected product ion costs for all samples 
and technologies us ing individual  sample mean  output  vectors and input  prices. 
Various radial scalings of  the sample mean  output vectors are examined.  Overall  
scale economies  (OSE) are also calculated at mean  prices for all technologies 
using the measure developed by Baumol  et al. (1982): 

O S E  = }2(0 In c / O  In q j ) .  

A value of O S E  exceeding 1 indicates decreasing returns, O S E  = 1 implies 
constant  returns, and O S E  < 1 suggests increasing returns to scale. 
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The 'rising' technologies MIXU1 and MIXB1 are seen to be uniformly lower 
cost than the technologies they supplant. For the unit sample, use of MIXU1 saves 
almost $1,000,000 at mean prices and outputs at the sample midyear point. Cost 
savings associated with MIXBI are smaller yet still amount to over $500,000 at 
sample mean outputs, an advantage of around 2.7%. These results are consistent 
with the hypothesis that significant technological conversions occurred in response 
to opportunities for cost savings. 

Evidence on scale economies provides additional insights. For both samples the 
low cost technologies exhibit more modest scale economies than their higher cost 
brethren. This observation is suggestive given the significant capital-saving techni- 
cal changes found for MIXU1 and MIXB 1. Lack of large scale economies implies 
a flexible technology applicable to widely varying output targets. Such a technol- 
ogy would be especially attractive in an unsettled, newly deregulated environment. 

The mixture results suggest that the U.S. banking industry experienced signifi- 
cant technical change and technological conversion during the mid 1980s. Techni- 
cal developments significantly affected production costs, and many firms appeared 
to alter their production practices towards lower cost operation. These conclusions, 
while plausible, immediately raise the issue of individual firm behavior. To what 
extent is the behavior of individual firms consistent with the logic of cost-saving 
technology switching? Confidentiality masking in our data precludes following 
individual firms year to year. It is however possible to utilize the observation- 
specific mixing weights wit to 'classify' firms as users of one or another 
technology by the criterion wi, ,~ 1/2. This allows calculation of the extent to 
which firms choose technologies that are lower cost given their outputs and input 
prices. 7 

For the branch state sample, MIXB 1 actually is lower cost for between 76.4% 
of firms (in 1982) and 94.6% of firms (in 1984), a typical value being 89%. More 
revealing is the evidence on low cost technology selection rates through time. In 
1982, the wit ' s  predict that 59.5% of branch firms probably choose their low cost 
option given their output and input price vectors. This figure steadily rises to 
80.8% by 1985 before declining to about 74% in the last sample year. This 
suggests that the passage of time generally results in larger proportions of these 
firms utilizing their lowest cost option. 

Results for banks facing severe regulatory branching restrictions are less 
conclusive. M1XU 1 actually is lower cost for between 85.7% and 89. 1% of sample 
firms in every year. The proportions of firms predicted to actually use their lower 
cost option exhibits almost no time pattern, varying between 56% and 69.5%. Unit 
banks do not appear to become much more likely to use low cost options as time 

7 This is an informal procedure because no correction is made for the "degree of beliel ~ wit used to 
classify firms. A large proportion of firms exhibit weights very close to 1 or 0, indicating highly 
accurate classification. 
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passes. Changes in the mixing weights exhibited in Table 2 therefore arise 
primarily from changes in the wit's that do not result in firms being reclassified as 
users of one or another technology. The slow and uncertain pace of diffusion 
among unit banks may reflect the severity of input usage restrictions they face. 

On balance, mixture analysis of the U.S. banking industry paints an interesting 
picture of the competitive process at work. Both unit and branch banks utilize 
multiple technologies of production. These production technologies differ in 
several important qualitative dimensions. In all cases, banks appear to be switch- 
ing to lower cost production technologies through time. These lower cost pro- 
cesses exhibit rapid technical progress that results in capital savings in production. 
These new technologies exhibit nearly constant returns to scale over a wide range 
of output levels. The technologies MIXU2 and MIXB2, which are growing less 
popular, exhibit greater levels of scale economies, presumably resulting in a 
narrower range of bank sizes which are competitively viable. Finally and most 
importantly, branching restrictions, while apparently having little effect on the 
integration of technical advances into the component cost functions, appear to 
have a profound and deleterious effect on firm switching to lower cost production 
processes. This 'regulatory drag' represents an important cost of branching 
restrictions that may impose significantly higher costs on bank customers in unit 
state jurisdictions. Branching restrictions themselves apparently limit the incentive 
of banks to convert to more cost efficient operations, the ability of banks to so 
convert, or both. 

5. Conclusion 

Finite mixture models provide a new way to analyze technical change and the 
diffusion of production practices. Mixture analysis does not require that adoption 
decisions be observable, facilitating wider application than typical diffusion stud- 
ies. Because mixture estimation provides cost function representations of underly- 
ing technologies, the cost consequences of innovations can be studied. Thus, 
mixture analysis combines the best features of the cost function and diffusion 
approaches to measuring technological evolution. 

A two-component normal translog cost model was specified and estimated on 
two large samples of U.S. banks for the years 1982-1986. Both the Wolfe test and 
bootstrap evidence suggested the presence of multiple technologies in both sam- 
ples. Increasing firm usage of lower cost technologies was discovered. These 
lower cost technologies exhibited significant capital-saving technical change and 
low levels of scale economies. The magnitude of diffusion was greater for branch 
state banks than unit state banks, providing evidence to suggest regulatory drag on 
the diffusion process. As the U.S. banking system achieves the elimination of all 
branching restrictions, our results suggest that the overall banking system will 
become more efficient. 
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The potential usefulness of our procedure as an input to policy making arises 
primarily from the ability of mixture models to distinguish between cost improve- 
ments arising from more efficient use of existing technologies, and cost savings 
driven by technical progress. The relative importance of these two components in 
banking (or other industries) is an empirical matter requiring the sort of empirical 
evidence that the mixture approach can provide. 

Our study represents the first application of mixture models to diffusion 
estimation and several extensions of our analysis are possible. First, frontier rather 
than average practice cost models may be feasible. Second, while confidentiality 
masking in our data made tracking individual firms impossible, true panel data 
would allow inclusion of time series properties such as autocorrelation. Third, 
mixtures of three or more components should be investigated. Finally, mixtures of 
production or profit functions would be natural extensions of the approach 
suggested here. 
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Appendix A 

: O-i 2 , "~ Maximization of L in Eq. (2) over A t, t 1,2 . . . . .  T, 0 ~, 02, and 0-5 is 
obtained via the EM algorithm proposed by Hartley (1978) and evaluated by 
Quandt (1988). Let ~b~t = ci ,  - C ( q i  ,, wi t ;  0 ~, t )  and similarly for 4 ~2i,. Define ~bi, as 

~i, = t~t4)lit @ ( 1  - -  /~ , )  ~ 2  (A.1) 

and define the observational weights Wil and W~ as: 

w,.; = 

,t," ~ , t j  (A.2) 
= (1  - a , )  ( , / , 2 / , / , . ) .  

Clearly W,.] + W/, 2 = 1 for any observation. The W/, terms are observation level 
analogues of the sample mixing weights a t and play a role in mixture model 
diagnostics. Define the diagonal matrices W~ and W 2 by: 

W' = diag[ W,',, W2 l, . . . . .  W,~], 

W 2 = diag[ W,], W 2 . . . . .  ~ 2 ] .  (A.3) 

Let c be the sample costs vector and X data on outputs, prices, and other 
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e x o g e n o u s  va r iab les  ( i f  any).  W h e n  C ( q , w ;  O, t) or a t r an s fo rma t ion  of  C ( . )  is 

l inear  in  X, the  E M  a l g o r i t h m  ca lcu la tes  at e ach  i tera t ion  the  values:  

O' = [ X ' W ' X ] - ' [  X ' W I c ] ,  ( A . 4 )  

0 2 =  [ x ,  w 2 x ] - ' [ x , w 2 c ] ,  

= ( 1 / T 1 ) (  c - x O ' ) ' w ' (  c - x o ' ) ,  

o-ff = ( 1 / T 2 ) (  c - X @ 2 ) ' W 2 (  c - X 6 ) 2 ) ,  

y ' n  t 1 T n~ 2 where  T 1 =Y'.7= 1 i=lWit and  T2=Y'. t=lF, i=lWit .The m i x i n g  we igh t s  are then  

g iven  by  

n t 

A, = E (A.5) 
i=1 

A s y m p t o t i c  s t andard  er rors  for  all e s t imates  are ob t a ined  by  a s ingle  i te ra t ion  of  

the  a lgo r i t hm of  B e r n d t  et  al. (1974) .  
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